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This paper presents a chronological overview of the develop-
ments in interpolation theory, from the earliest times to the present
date. It brings out the connections between the results obtained
in different ages, thereby putting the techniques currently used in
signal and image processing into historical perspective. A summary
of the insights and recommendations that follow from relatively re-
cent theoretical as well as experimental studies concludes the pre-
sentation.
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“It is an extremely useful thing to have knowledge of the
true origins of memorable discoveries, especially those that
have been found not by accident but by dint of meditation.
It is not so much that thereby history may attribute to each
man his own discoveries and others should be encouraged to
earn like commendation, as that the art of making discoveries
should be extended by considering noteworthy examples of
it.” 1

I. INTRODUCTION

The problem of constructing a continuously defined func-
tion from given discrete data is unavoidable whenever one
wishes to manipulate the data in a way that requires informa-
tion not included explicitly in the data. In this age of ever-in-
creasing digitization in the storage, processing, analysis, and
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1Leibniz, in the opening paragraph of hisHistoria et Origo Calculi Dif-
ferentialis[1]. The translation given here was taken from a paper by Child
[2].

communication of information, it is not difficult to find ex-
amples of applications where this problem occurs. The rel-
atively easiest and in many applications often most desired
approach to solve the problem isinterpolation, where an ap-
proximating function is constructed in such a way as to agree
perfectly with the usually unknown original function at the
given measurement points.2 In view of its increasing rele-
vance, it is only natural that the subject of interpolation is
receiving more and more attention these days.3 However,
in times where all efforts are directed toward the future, the
past may easily be forgotten. It is no sinecure, scanning the
literature, to get a clear picture of the development of the
subject through the ages. This is quite unfortunate, since it
implies a risk of researchers going over grounds covered ear-
lier by others. History has shown many examples of this and
several new examples will be revealed here. The goal of the
present paper is to provide a systematic overview of the de-
velopments in interpolation theory, from the earliest times to
the present date and to put the most well-known techniques
currently used in signal and image processing applications
into historical perspective. The paper is intended to serve as
a tutorial and a useful source of links to the appropriate liter-
ature for anyone interested in interpolation, whether it be its
history, theory, or applications.

As already suggested by the title, the organization of
the paper is largely chronological. Section II presents an

2The word “interpolation” originates from the Latin verbinterpolare,
a contraction of “inter,” meaning “between,” and “polare,” meaning “to
polish.” That is to say, to smooth in between given pieces of information.
It seems that the word was introduced in the English literature for the first
time around 1612 and was then used in the sense of “to alter or enlarge
[texts] by insertion of new matter” [3]. The original Latin word appears [4]
to have been used first in a mathematical sense by Wallis in his 1655 book
on infinitesimal arithmetic [5].

3A search in the multidisciplinary databases of bibliographic information
collected by the Institute for Scientific Information in the Web of Science
will reveal that the number of publications containing the word “interpola-
tion” in the title, list of keywords, or the abstract has dramatically increased
over the past decade, even when taking into account the intrinsic (and like-
wise dramatic) increase in the number of publications as a function of time.
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overview of the earliest known uses of interpolation in
antiquity and describes the more sophisticated interpolation
methods developed in different parts of the world during
the Middle Ages. Next, Section III discusses the origins of
the most important techniques developed in Europe during
the period of Scientific Revolution, which in the present
context lasted from the early 17th until the late 19th century.
A discussion of the developments in what could be called
the Information and Communication Era, covering roughly
the past century, is provided in Section IV. Here, the focus
of attention is on the results that have had the largest impact
on the advancement of the subject in signal and image
processing, in particular on the development of techniques
for the manipulation of intensity data defined on uniform
grids. Although recently developed alternative methods for
specific interpolation tasks in this area will also be men-
tioned briefly, the discussion in this part of the paper will
be restricted mainly to convolution-based methods, which is
justified by the fact that these are the most frequently used
interpolation methods, probably because of their versatility
and relatively low complexity. Finally, summarizing and
concluding remarks are made in Section V.

II. A NCIENT TIMES AND THE MIDDLE AGES

In his 1909 book on interpolation [6], Thiele character-
ized the subject as “the art of reading between the lines in a
[numerical] table.” Examples of fields in which this problem
arises naturally and inevitably are astronomy and, related to
this, calendar computation. Because man has been interested
in these since day one, it should not surprise us that it is
in these fields that the first interpolation methods were con-
ceived. This section discusses the earliest known contribu-
tions to interpolation theory.

A. Interpolation in Ancient Babylon and Greece

In antiquity, astronomy was all about time keeping and
making predictions concerning astronomical events. This
served important practical needs: farmers, e.g., would base
their planting strategies on these predictions. To this end,
it was of great importance to keep up lists—so-called
ephemerides—of the positions of the sun, moon, and
the known planets for regular time intervals. Obviously,
these lists would contain gaps, due to either atmospherical
conditions hampering observation or the fact that celestial
bodies may not be visible during certain periods. From
his study of ephemerides found on ancient astronomical
cuneiform tablets originating from Uruk and Babylon
in the Seleucid period (the last three centuries BC), the
historian-mathematician Neugebauer [7], [8] concluded that
interpolation was used in order to fill these gaps. Apart from
linear interpolation, the tablets also revealed the use of more
complex interpolation methods. Precise formulations of the
latter methods have not survived, however.

An early example of the use of interpolation methods in
ancient Greece dates from about the same period. Toomer
[9] believes that Hipparchus of Rhodes (190–120 BC) used
linear interpolation in the construction of tables of the

so-called “chord function” (related to the sine function)
for the purpose of computing the positions of celestial
bodies. Later examples are found in theAlmagest(“The
Mathematical Compilation,”ca. 140 AD) of Claudius
Ptolemy, the Egypt-born Greek astronomer-mathematician
who propounded the geocentric view of the universe which
prevailed until the 16th century. Apart from theory, this
influential work also contains numerical tables of a wide
variety of trigonometric functions defined for astronomical
purposes. To avoid the tedious calculations involved in the
construction of tables of functions of more than one variable,
Ptolemy used an approach that amounts to tabulating the
function only for the variable for which the function varies
most, given two bounding values of the other variable and
to provide a table of coefficients to be used in an “adaptive”
linear interpolation scheme for computation of the function
for intermediate values of this latter variable [10].

B. Interpolation in Early-Medieval China and India

Analysis of the computational techniques on which early-
medieval Chinese ephemerides are based often reveals the
use of higher order interpolation formulae.4 The first person
to use second-order interpolation for computing the positions
of the sun and the moon in constructing a calendar is said to
be the astronomer Liù Zhuó. Around 600 AD, he used this
technique in producing the so-calledHuáng jí lì or “Impe-
rial Standard Calendar.” According to Yăn and Shírán [12],
the formula involved in his computations reads in modern
notation5

(1)

with , , and
and with

and the observed results at times
and , respectively. This formula is closely related to
later Western interpolation formulae, to be discussed in the
next section. Methods for second-order interpolation of un-
equal-interval observations were later used by the astronomer
Monk Yì Xíng in producing the so-called “Dà Y̆an Calendar”
(727 AD) and by XúÁng in producing the “Xūan Míng Cal-
endar” (822 AD). The latter also used a second-order formula
for interpolation of equal-interval observations equivalent to
the formula used by Liù Zhuó.

Accurate computation of the motion of celestial bodies,
however, requires more sophisticated interpolation tech-
niques than just second order. More complex techniques
were later developed by Gūo Sh̄oujìng and others. In

4The paragraphs on Chinese contributions to interpolation theory are
based on the information provided in the books by Martzloff [11] and Yăn
and Shírán [12]. For a more elaborate treatment of the techniques and
formulae mentioned here, see the latter. This reference was brought to the
author’s attention by Phillips in the brief historical notes on interpolation
in his recent book [13].

5Note that, although supposedly unintended, the actual formula given by
Yăn and Shírán is only valid in cases where the time interval equals one,
since the variable is not normalized. The formula given here is identical to
theirs, except that we use a normalized variable.
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1280 AD, they produced the so-calledShòu shí lì, or
“Works and Days Calendar” for which they used third-order
interpolation. Although they did not write down explicitly
third-order interpolation formulae, it follows from their
computations recorded in tables that they had grasped the
principle.

Important contributions in the area of finite-difference
computation were made by the Chinese mathematician
Zhū Shìjié. In his bookSìyuán yùjiàn(“Jade Mirror of the
Four Origins,” 1303 AD), he gave the following problem
(quoted freely from Martzloff [11]): “Soldiers are recruited
in cubes. On the first day, the side of the cube is three. On the
following days, it is one more per day. At present, it is 15.
Each soldier receives 250guanper day. What is the number
of soldiers recruited and what is the total amount paid out?”

In explaining the answer to the first question, Zhū Shìjié
gives a sequence of verbal instructions (a “resolutory rule”)
for finding the solution, which, when cast in modern alge-
braic notation, reveals the suggestion to use the following
formula:

(2)

where is the total number of soldiers recruited indays
and the differences are defined by
and , with and integers.
Although the specific problem requires only differences up
to fourth order, the proposed formula to solve it can easily be
generalized to any arbitrary degree and has close connections
with later Western interpolation formulae to be discussed in
the next section.

In India, work on higher order interpolation started around
the same time as in China.6 In his work Dhyānagraha(ca.
625 AD), the astronomer-mathematician Brahmagupta
included a passage in which he proposed a method for
second-order interpolation of the sine and versed sine
functions. Rephrasing the original Sanskrit text in algebraic
language, Gupta [15] arrived at the following formula:

(3)

with . In a later work,Khan-
dakh̄adyaka(665 AD), Brahmagupta also described a more
general method that allowed for interpolation of unequal-in-
terval data. In the case of equal intervals, this method reduces
to (3).

Another rule for making second-order interpolations can
be found in a commentary on the seventh-century work
Mahābh̄askar̄iya by Bhāskara I, ascribed to Govindasvāmi

6Martzloff [11], referring to Cullen [14], conjectures that this may not be
a coincidence, since it was the time when Indian and Chinese astronomers
were working together at the court of the Táng.

(ca. 800–850 AD). Expressed in algebraic notation, it reads
[15]

(4)

It is not difficult to see that this formula is equivalent to (3).
According to Gupta [15], it is also found in two early 15th-
century commentaries by Parames´vara.

C. Late-Medieval Sources on Interpolation

Use of the just described second-order interpolation
formulae amounts to fitting a parabola through three
consecutive tabular values. Kennedy [16] mentions that
parabolic interpolation schemes are also found in several
Arabic and Persian sources. Noteworthy are the works
al-Qānūn’l-Mas’ūdi (“Canon Masudicus,” 11th century)
by al-B̄irūn̄i and Zīj-i-Khāqān̄i (early 15th century) by
al-Kāsh̄i. Concerning the parabolic interpolation methods
described therein, Gupta [15] and later Rashed [17] have
pointed at possible Indian influences, since the important
works of Brahmagupta were translated into Arabic as early
as the eighth century AD. Not to mention the fact that
al-Bīrūn̄i himself travelled through and resided in several
parts of India, studied Indian literature in the original, wrote
a book about India, and translated several Sanskrit texts into
Arabic [18].

III. T HE AGE OFSCIENTIFIC REVOLUTION

Apparently, totally unaware of the important results ob-
tained much earlier in other parts of the world, interpolation
theory in Western countries started to develop only after a
great revolution in scientific thinking. Especially the new
developments in astronomy and physics, initiated by Coper-
nicus, continued by Kepler and Galileo and culminating in
the theories of Newton, gave strong impetus to the further
advancement of mathematics, including what is now called
“classical” interpolation theory.7 This section highlights
the most important contributions to interpolation theory in
Western countries until the beginning of the 20th century.

A. General Interpolation Formula for Equidistant Data

Before reviewing the different classical interpolation for-
mulae, we first study one of the better known.8 Suppose that
we are given measurements of some quantity at, ,

and that in order to obtain its value at any inter-
mediate point , we locally model it as a poly-

7In constructing the chronology of classical interpolation formulae pre-
sented in this section, the interesting—though individually incomplete—ac-
counts given by Fraser [19], Goldstine [20], Joffe [21], and Turnbull [22]
have been most helpful.

8This section includes explicit formulae only insofar as necessary to
demonstrate the link with those in the previous or next section. For a more
detailed treatment of these and other formulae, including such aspects as
accuracy and implementation, see several early works on interpolation [19],
[21], [23]–[26] and the calculus of finite differences [27]–[30], as well as
more general books on numerical analysis [20], [31]–[35], most of which
also discuss inverse interpolation and the role of interpolation in numerical
differentiation and integration.
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nomial of given degree , i.e.,
. It is easy to show [23] that

any such polynomial can be written in terms of factorials
, with integer, as

. If we now
define the first-order difference of any function
at any as and similarly the higher
order differences as ,
for all integer, it follows that . By
repeated application of the difference operatorto the fac-
torial representation of and taking , we find
that the coefficients , can be expressed as

so that if could be made arbitrarily large,
we would have

(5)

This general formula9 was first written down in 1670 by
Gregory and can be found in a letter by him to Collins [39].
Particular cases of it, however, had been published sev-
eral decades earlier by Briggs,10 the man who brought to
fruition the work of Napier on logarithms. In the introduc-
tory chapters to his major works [41], [42], he described the
precise rules by which he carried out his computations, in-
cluding interpolations, in constructing the tables contained
therein. In the first, e.g., he described a subtabulation rule
that, when written in algebraic notation, amounts to (5) for
the case when third- and higher order differences are neg-
ligible [20], [22]. It is known [20], [43] that still earlier,
around 1611, Harriot used a formula equivalent to (5) up
to fifth-order differences.11 However, even he was not the
first in the world to write down such rules. It is not dif-
ficult to see that the right-hand side of the second-order
interpolation formula (1) used by Liù Zhuó can be rewritten
so that it equals the first three terms of (5) and, if we re-
place the integer argumentby the real variable in Zhū
Shìjié’s formula (2), we obtain at once (5) for the case
when , , and .

9It is interesting to note that Taylor [36] obtained his now well-known
series as a simple corollary to (5). It follows, indeed, by substituting
� = h=T and takingT ! 0. (It is important to realize here thatf(x )
is in fact f(x + �T )j , so that�f (x ) = f(x + T )� f(x ) and
similar for the higher order differences.) The special version forx = 0
was later used by Maclaurin [37] as a fundamental tool. See also e.g.,
Kline [38].

10Gregory was also aware of a later method by Mercator, for in
his letter he refers to his own method as being “both more easie and
universal than either Briggs or Mercator’s” [39]. In France, it was
Mouton who used a similar method around that time [40].

11Goldstine [20] speculates that Briggs was aware of Harriot’s work
on the subject and is inclined to refer to the formula as the Harriot-
Briggs relation. Neither Harriot nor Briggs, however, ever explained how
they obtained their respective rules and it has remained unclear up till
today.

B. Newton’s General Interpolation Formulae

Notwithstanding these facts, it is justified to say that “there
is no single person who did so much for this field, as for so
many others, as Newton” [20]. His enthusiasm becomes clear
in a letter he wrote to Oldenburg [44], where he first describes
a method by which certain functions may be expressed in
series of powers of and then goes on to say12: “But I attach
little importance to this method because when simple series
are not obtainable with sufficient ease, I have another method
not yet published by which the problem is easily dealt with.
It is based upon a convenient, ready and general solution of
this problem.To describe a geometrical curve which shall
pass through any given points… Although it may seem to be
intractable at first sight, it is nevertheless quite the contrary.
Perhaps indeed it is one of the prettiest problems that I can
ever hope to solve.”

The contributions of Newton to the subject are contained
in: 1) a letter [45] to Smith in 1675; 2) a manuscript entitled
Methodus Differentialis[46], published in 1711, although
earlier versions were probably written in the middle 1670s;
3) a manuscript entitledRegula Differentiarum, written in
1676, but first discovered and published in the 20th century
[19], [47]; and 4) Lemma V in Book III of his celebrated
Principia [48], which appeared in 1687.13 The latter was pub-
lished first and contains two formulae. The first deals with
equal-interval data and is precisely (5), which Newton seems
to have discovered independently of Gregory.14 The second
formula deals with the more general case of arbitrary-interval
data and may be derived as follows.

Suppose that the values of the aforementioned quantity are
given at , which may be arbitrary and that
in order to obtain its value at intermediate points we model it
again as a polynomial function . If we then define
the first-orderdivideddifference of any function
for any two as

, it follows that the value of at any could be
written as . If we define
the higher order divided differences15 as

, for all
integer, we can substitute for the expression that fol-
lows from the definition of and subsequently for

the expression that follows from the definition
of , etc., so that if we could go on, we would
have

12The somewhat free translation from the original Latin is from Fraser
[19] and differs, although not fundamentally, from that given by Turnbull
[44].

13All of these are reproduced (whether or not translated) and discussed in
a booklet by Fraser [19].

14This is probably why it is nowadays usually referred to as the Gregory–
Newton formula. There is reason to suspect, however, that Newton must
have been familiar with Briggs’ works [19].

15Although Newton appears to have been the first to use these for interpo-
lation, he did not call them “divided differences.” It has been said [23] that
it was De Morgan [49] who first used the term.
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(6)

It is this formula that can be considered the most general of all
classical interpolation formulae. As we will see in the sequel,
all later formula can easily be derived from it.16

C. Variations of Newton’s General Interpolation Formulae

The presentation of the two interpolation formulae in
the Principia is heavily condensed and contains no proofs.
Newton’s Methodus Differentialiscontains a more elab-
orate treatment, including proofs and several alternative
formulae. Three of those formulae for equal-interval data
were discussed a few years later by Stirling [50].17 These
are the Gregory–Newton formula and two central-differ-
ence formulae, the first of which is now known as the
Newton-Stirling formula18

(7)

It is interesting to note that Brahmagupta’s formula (3) is, in
fact, the Newton-Stirling formula for the case when the third-
and higher order differences are zero.

A very elegant alternative representation of Newton’s gen-
eral formula (6) that does not require the computation of fi-
nite or divided differences was published in 1779 by Waring
[52]

(8)

It is nowadays usually attributed to Lagrange who, in ap-
parent ignorance of Waring’s paper, published it 16 years
later [53]. The formula may also be obtained from a closely
related representation of Newton’s formula due to Euler [54].
According to Joffe [21], it was Gauss who first noticed the
logical connection and proved the equivalence of the for-
mulae by Newton, Euler, and Waring–Lagrange, as appears
from his posthumous works [55], although Gauss did not
refer to his predecessors.

16Equation (5), e.g., follows by substitutingx = x +T ,x = x +2T ,
x = x +3T; . . ., andx = x +�T and rewriting the divided differences
f(x ; . . . ; x ) in terms of finite differences� f(x ).

17Newton’s general formula was treated by him in his 1730 booklet [51]
on the subject.

18The formula may be derived from (6) by substitutingx = x + T ,
x = x � T , x = x + 2T , x = x � 2T; . . ., andx = x + �T ,
rewriting the divided differencesf(x ; . . . ; x ) in terms of finite differ-
ences� f(x ), and rearranging the terms [23].

In 1812, Gauss delivered a lecture on interpolation, the
substance of which was recorded by his then student, Encke,
who first published it not until almost two decades later [56].
Apart from other formulae, he also derived the one which is
now known as the Newton-Gauss formula

(9)

It is this formula19 that formed the basis for later theories on
sampling and reconstruction, as will be discussed in the next
section. Note that this formula too had its precursor, in the
form of Govindasv̄ami’s rule (4).

In the course of the 19th century, two more formulae
closely related to (9) were developed. The first appeared in a
paper by Bessel [57] on computing the motion of the moon
and was published by him because, in his own words, he
could “not recollect having seen it anywhere.” The formula
is, however, equivalent to one of Newton’s in hisMethodus
Differentialis, which is the second central-difference formula
discussed by Stirling [50] and has, therefore, been called
the Newton–Bessel formula. The second formula, which
has frequently been used by statisticians and actuaries, was
developed by Everett [58], [59] around 1900 and reads

(10)

where

(11)

and use has been made of Sheppard’s central-difference op-
erator , defined by and

, integer,
for any function at any . The elegance of this
formula lies in the fact that, in contrast with the earlier men-
tioned formulae, it involves only the even-order differences
of the two table entries between which to interpolate.20 It
was noted later by Joffe [21] and Lidstone [61] that the for-
mulae of Bessel and Everett had alternatively been proven
by Laplace by means of his method ofgenerating functions
[62], [63].

19Even more easily than the Newton-Stirling formula, this formula fol-
lows from (6) by proceeding in a similar fashion as in the previous footnote.

20This is achieved by expanding the odd-order differences in the Newton-
Gauss formula according to their definition and rearranging the terms after
simple transformations of the binomial coefficients [23]. Alternatively, we
could expand the even-order differences so as to end up with only odd-order
differences. The resulting formula appears to have been described first by
Steffensen [25] and is, therefore, sometimes referred to as such [31], [60],
although he himself calls it Everett’s second interpolation formula.
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D. Studies on More General Interpolation Problems

By the beginning of the 20th century, the problem of
interpolation by finite or divided differences had been
studied by astronomers, mathematicians, statisticians, and
actuaries,21 and most of the now well-known variants of
Newton’s original formulae had been worked out. This is
not to say, however, that there are no more advanced devel-
opments to report on. Quite to the contrary. Already in 1821,
Cauchy [65] studied interpolation by means of a ratio of two
polynomials and showed that the solution to this problem is
unique, the Waring–Lagrange formula being the special case
for the second polynomial equal to one.22 Generalizations
for solving the problem of multivariate interpolation in
the case of fairly arbitrary point configurations began to
appear in the second half of the 19th century, in the works
of Borchardt and Kronecker [68]–[70].

A generalization of a different nature was published in
1878 by Hermite [71], who studied and solved the problem
of finding a polynomial of which also the first few deriva-
tives assume prespecified values at given points, where the
order of the highest derivative may differ from point to point.
In a paper [72] published in 1906, Birkhoff studied the even
more general problem: given any set of points, find a polyno-
mial function that satisfies prespecified criteria concerning
its value and/or the value of any of its derivatives for each
individual point.23 Hermite and Birkhoff type of interpola-
tion problems—and their multivariate versions, not neces-
sarily on Cartesian grids—have received much attention in
the past decades. A more detailed treatment is outside the
scope of this paper, however, and the reader is referred to
relevant books and reviews [70], [79]–[83].

21Many of them introduced their own system of notation and terminology,
leading to confusion and researchers reformulating existing results. The
point was discussed by Joffe [21], who also made an attempt to standardize
yet another system. It is, however, Sheppard’s notation [64] for central and
mean differences that has survived in most later publications.

22It was Cauchy also who, in 1840, found an expression for the error
caused by truncating finite-difference interpolation series [66]. The abso-
lute value of this so-called Cauchy remainder term can be minimized by
choosing the abscissae as the zeroes of the polynomials introduced later by
Tchebychef [67]. See, e.g., Davis [26], Hildebrand [31], or Schwarz [34] for
more details.

23Birkhoff interpolation, also known aslacunary interpolation, initially
received little attention, until Schoenberg [73] revived interest in the subject.
The problem has since usually been stated in terms of the pair(E;X), where
X = fx g is the set of points or nodes andE = [e ] is the
so-calledincidence matrixor interpolation matrix, with e = 1 for thosei
andj for which the interpolating polynomialP is to satisfy a given criterion
P (x ) = c ande = 0, otherwise. Several special cases had been
studied earlier and carry their own name: ifE is an(m + 1)� 1 column
matrix with e = 1 for all i = 0; . . . ;m, we have the Waring–Lagrange
interpolation problem. If, on the other hand, it is a1� (k + 1) row matrix
with e = 1, for all j = 0; . . . ; k, we may speak of a Taylor interpolation
problem [26]. IfE is an(m+1)�(k+1)matrix withe = 1, for all i =
0; . . . ;m, andj = 0; . . . ; k , withk k, we have Hermite’s interpolation
problem, where the casek = k for all i = 0; . . . ;m, with usuallyk = 1,
is also calledosculatoryor osculating interpolation[25], [26], [31]. The
problem corresponding toE = I , with I the(m+1)�(m+1)unit matrix,
was studied by Abel [74] and later by Gontcharoff and others [26], [75],
[76] and, finally, we mention the two-point interpolation problem studied by
Lidstone [26], [76]–[78] for whichE is a2� (k+1) matrix withe = 1
for all j even.

E. Approximation Versus Interpolation

Another important development from the late 1800s is the
rise of approximation theory. For a long time, one of the main
reasons for the use of polynomials had been the fact that they
are simply easy to manipulate, e.g., to differentiate or inte-
grate. In 1885, Weierstrass [84] alsojustified their use for
approximation by establishing the so-calledapproximation
theorem, which states that every continuous function on a
closed interval can be approximated uniformly to any pre-
scribed accuracy by a polynomial.24 The theorem does not
provide any means of obtaining such a polynomial, however,
and it soon became clear that it does not necessarily apply if
the polynomial is forced to agree with the function at given
points within the interval, i.e., in the case of an interpolating
polynomial.

Examples of meromorphic functions for which the
Waring–Lagrange interpolator does not converge uniformly
were given by Méray [86], [87] and later Runge [88]—es-
pecially the latter has become well known and can be found
in most modern books on the topic. A more general result
is due to Faber [89], who, in 1914, showed that for any
prescribed triangular system of interpolation points there
exists a continuous function for which the corresponding
Waring–Lagrange interpolation process carried out on
these points does not converge uniformly to this function.
Although it has later been proven possible to construct
interpolating polynomials thatdo converge properly for all
continuous functions, e.g., by using the Hermite type of
interpolation scheme proposed by Fejér [90] in 1916, these
findings clearly revealed the “inflexibility” of algebraic
polynomials and their limited applicability to interpolation.

IV. THE INFORMATION AND COMMUNICATION ERA

When Fraser [19], in 1927, summed up the state of affairs
in classical interpolation theory, he also expressed his ex-
pectations concerning the future and speculated: “The 20th
century will no doubt see extensions and developments of
the subject of interpolation beyond the boundaries marked
by Newton 250 years ago.” This section gives an overview
of the advances in interpolation theory in the past century,
proving that Fraser was right. In fact, he was so right that
our rendition of this part of history is necessarily of a more
limited nature than the expositions in the previous sections.
After having given an overview of the developments that led
to the two most important theorems on which modern inter-
polation theory rests, we focus primarily on their later impact
on signal and image processing.

A. From Cardinal Function to Sampling Theory

In his celebrated 1915 paper [91], Whittaker noted that
given the values of a function corresponding to an infinite
number of equidistant values of its argument, ,

, from which we can construct a table of dif-
ferences for interpolation, there exist many other functions
which give rise to exactly the same difference table. He then

24For more detailed information on the development of approximation
theory, see the recently published historical review by Pinkus [85].
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considered the Newton-Gauss formula (9) and set out to an-
swer the question of which one of the cotabular functions is
represented by it. The answer, he proved, is that under cer-
tain conditions it represents thecardinal function

(12)

which he observed to have the remarkable properties that,
apart from the fact that it is cotabular with the original func-
tion since , for all , it has
no singularities and all “constituents” of period less than
are absent.

Although Whittaker did not refer to any earlier works, it
is now known25 that the series (12) with and
had essentially been given as early as 1899 by Borel [94],
who had obtained it as the limiting case of the Waring–La-
grange interpolation formula.26 Borel, however, did not es-
tablish the “band-limited” nature of the resulting function nor
did Steffensen in a paper [100] published in 1914, in which
he gave the same formula as Borel, though he referred to
Hadamard [102] as his source. De la Vallée Poussin [103], in
1908, studied the closely related case where the summation
is over a finite interval, but the number of known function
values in that interval goes to infinity by taking
and . In contrast with the Waring–Lagrange poly-
nomial interpolator, which may diverge as we have seen in
the previous section, he found that the resulting interpolating
function converges to the original function at any point in the
interval where that function is continuous and of bounded
variation.

The issue of convergence was an important one in sub-
sequent studies of the cardinal function. In establishing
the equivalence of the cardinal function and the function
obtained by the Newton-Gauss interpolation formula,
Whittaker had assumed convergence of both series ex-
pansions. Later authors showed, by particular examples,
that the former may diverge when the latter converges.
The precise relationship was studied by Ferrar [104], who
showed that when the series of type (12) converges, (9)
also converges and has the same sum. If, on the other hand,
(9) is convergent, then (12) is either convergent or has a
generalized sum in the sense used by de la Vallée Poussin
for Fourier series [105], [106]. Concerning the convergence
of the cardinal series, Ferrar [96], [104],[107] and later
Whittaker [76], [108], [109] studied several criteria. Perhaps
the most important is that of , where

, being a sufficient condition for having

25For more information on the development of sampling theory, the reader
is referred to the historical accounts given by Higgins [92] and Butzer and
Stens [93].

26Since Borel [94], the equivalence of the Waring–Lagrange interpola-
tion formula and (12) in the case of infinitely many known function values
between which to interpolate has been pointed out and proven by many au-
thors [76], [92], [93], [95]–[99]. Apart from the Newton-Gauss formula, as
shown by Whittaker [91], equivalence also holds for other classical inter-
polation formulae, such as Newton’s divided difference formula [76], [100]
or the formulae by Everettet al. [101], discussed in the previous section.
Given Borel’s result, this is an almost trivial observation, since all classical
schemes yield the exact same polynomial for a given set of known function
values, irrespective of their number.

absolute convergence—a criterion that had also been given
by Borel [94]. It was Whittaker [76], [109] who gave more
refined statements as to the relation between the cardinal
series and the truncated Fourier integral representation of a
function in the case of convergence—results that also relate
to the property called by Ferrar the “consistency” of the
series [76], [96], [107],[109], which implies the possibility
of reproducing the cardinal function as given in (12) by
using its values , with .

It must have been only shortly after publication of
Whittaker’s works [76], [108], [109] on the cardinal series
that Shannon recognized their evident importance to the
field of communication. He formulated the now well-known
sampling theorem, which he first published [110] without
proof in 1948 and the subsequent year with full proof in
a paper [111] apparently written already in 1940: “If a
function contains no frequencies higher than cps
[cycles per second], it is completely determined by giving its
ordinates at a series of points spaced seconds apart.”
Later on in the paper, he referred to the critical sampling
interval as theNyquist intervalcorresponding
to the band , in recognition of Nyquist’s discovery [112]
of the fundamental importance of this interval in connection
with telegraphy. In describing the reconstruction process, he
pointed out that “There is one and only one function whose
spectrum is limited to a band and which passes through
given values at sampling points separated seconds
apart. The function can be simply reconstructed from the
samples by using a pulse of the type …
Mathematically, this process can be described as follows.
Let be the th sample. Then the functionis represented
by

(13)

As pointed out by Higgins [92], the sampling theorem
should really be considered in two parts, as done above: the
first stating the fact that a bandlimited function is completely
determined by its samples, the second describing how to
reconstruct the function using its samples. Both parts of
the sampling theorem were given in a somewhat different
form by Whittaker [76], [108], [109] and before him also by
Ogura [113], [114]. They were probably not aware of the
fact that the first part of the theorem had been stated as early
as 1897 by Borel [115].27 As we have seen, Borel also used
around that time what became known as the cardinal series.
However, he appears not to have made the link [92]. In later
years, it became known that the sampling theorem had been
presented before Shannon to the Russian communication
community by Kotel’nikov [118]. In more implicit verbal
form, it had also been described in the German literature by
Raabe [119]. Several authors [120], [121] have mentioned
that Someya [122] introduced the theorem in the Japanese

27Several authors, following Black [116], have claimed that this first part
of the sampling theorem was stated even earlier by Cauchy in a paper [117]
published in 1841. However, the paper of Cauchy does not contain such a
statement, as has been pointed out by Higgins [92].
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literature parallel to Shannon. In the English literature,
Weston [123] introduced it independently of Shannon
around the same time.28

B. From Osculatory Interpolation Problems to Splines

Having arrived at this point, we go back again more than
half a century to follow a parallel development of quite dif-
ferent nature. It is clear that practical application of any of
the classical polynomial interpolation formulae discussed in
the previous section implies taking into account only the
first few of the infinitely many terms. In most situations, it
will be computationally prohibitive to consider all or even a
large number of known function values when computing an
interpolated value. Keeping the number of terms fixed im-
plies fixing the degree of the polynomial curves resulting in
each interpolation interval. Irrespective of the degree, how-
ever, the composite piecewise polynomial interpolant will
generally not be continuously differentiable at the transition
points.

The need for smoother interpolants in some applications
led in the late 1800s to the development of so-calledoscu-
latory interpolationtechniques, most of which appeared in
the actuarial literature [126]–[128]. A well-known example
of this is the formula proposed in 1899 by Karup [129] and
independently described by King [130] a few years later,
which may be obtained from Everett’s general formula (10)
by taking

(14)

and results in a piecewise third-degree polynomial inter-
polant which is continuous and, in contrast with Everett’s
third-degree interpolant, is also continuously differentiable
everywhere.29 By using this formula, it is possible to repro-
duce polynomials up to second degree. Another example is
the formula proposed in 1906 by Henderson [136], which
may be obtained from (10) by substituting

(15)

28As a consequence of the discovery of the several independent intro-
ductions of the sampling theorem, people started to refer to the theorem by
including the names of the aforementioned authors, resulting in such catch-
phrases as “the Whittaker-Kotel’nikov-Shannon sampling theorem” [124]
or even “the Whittaker-Kotel’nikov-Raabe-Shannon-Someya sampling the-
orem” [121]. To avoid confusion, perhaps the best thing to do is to refer to
it as thesampling theorem, “rather than trying to find a title that does justice
to all claimants” [125].

29The word “osculatory” originates from the Latin verbosculari, which
literally means “to kiss” and can be translated here as “joining smoothly.”
Notice that the meaning of the word in this context is more general than
in Footnote 23: Hermite interpolation may be considered that type of os-
culatory interpolation where the derivatives up to some degree are not only
supposed to be continuous everywhere but are also required to assume pre-
specified values at the sample points. It is especially this latter type of in-
terpolation problem to which the adjective “osculatory” has been attached
in later publications [131]–[135]. For a more elaborate discussion of oscula-
tory interpolation in the original sense of the word, see several survey papers
[126]–[128].

and also yields a continuously differentiable piecewise third-
degree polynomial interpolant, but is capable of reproducing
polynomials up to third degree. A third example is the for-
mula published in 1927 by Jenkins [137], obtained from (10)
by taking

(16)

The first and second term of this function are equal to those
of Henderson’s and Everett’s function, but the third term is
chosen in such a way that the resulting composite curve is
a piecewise third-degree polynomial, which istwicecontin-
uously differentiable. The price to pay, however, is that this
curve is not an interpolant.

The need for practically applicable methods for interpola-
tion or smoothing of empirical data also formed the impetus
to Schoenberg’s study of the subject. In his 1946 landmark
paper [138], [139], he noted that for every osculatory inter-
polation formula applied to equidistant data, where he as-
sumed the distance to be unity, there exists an even function

in terms of which the formula may be written as

(17)

where , which he termed thebasic functionof the formula,
completely determines the properties of the resulting inter-
polant and reveals itself when applying the initial formula to
the impulse sequence defined by and
. By analogy with Whittaker’s cardinal series (12), Schoen-

berg referred to the general expression (17) as a formula of
thecardinal type, but noted that the basic function

is inadequate for numerical purposes due to its
excessively low damping rate. The basic functions involved
in Waring–Lagrange interpolation, on the other hand, possess
the limiting property of being at most continuous, but not
continuously differentiable. He then pointed at the smooth
curves obtained by the use of a mechanical spline,30 argued
that these are piecewise cubic arcs with a continuous first-
and second-order derivative and continued to introduce the
notion of the mathematical spline: “A real functionde-
fined for all real is called a spline curve of order and
denoted by if it enjoys the following properties: 1) it is
composed of polynomial arcs of degree at most ; 2) it is
of class , i.e., has continuous derivatives; 3) the
only possible function points of the various polynomial arcs
are the integer points if is even, or else the points

if is odd.” Notice that these requirements
are satisfied by the curves resulting from the aforementioned
smoothing formula proposed by Jenkins and also studied by
Schoenberg [138], which constitutes one of the earliest ex-
amples of a spline generating formula.

30The word “spline” can be traced back to the 18th century, but by the
end of the 19th century was used to refer to “a flexible strip of wood or hard
rubber used by draftsmen in laying out broad sweeping curves” [3]. Such
mechanical splines were used, e.g., to draw curves needed in the fabrication
of cross sections of ships’ hulls. Drucks or weights were placed on the strip
to force it to go through given points and the free portion of the strip would
assume a position in space that minimized the bending energy [140].
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After having given the definition of a spline curve,
Schoenberg continued to prove that “any spline curve
may be represented in one and only one way in the form

(18)

for appropriate values of the coefficients . There are
no convergence difficulties since vanishes for

. Thus, (18) represents an for arbitrary
and represents the most general one.” Here,
denotes the so-called B-spline of degree , which
he had defined earlier in the paper as the inverse Fourier
integral

(19)

and, equivalently, also as31

(20)

where is again the th-order central difference operator
and denotes the one-sided power function defined as

if
if

(21)

C. Convolution-Based Function Representation

Although there are certainly differences, it is interesting
to look at the similarities between the theorems described by
Shannon and Schoenberg: both of them involve the defini-
tion of a class of functions satisfying certain
properties and both involve the representation of these func-
tions by a mixed convolution of a set of coefficientswith
some basic function orkernel , according to the
formula

(22)

where the subscript , the sampling interval, is now added to
stress the fact that we are dealing with a representation—or,
depending on , perhaps only an approximation—of
any such original function based on its -equidistant
samples. In the case of Shannon, theare bandlimited
functions, the coefficients are simply the samples

and the kernel is the sinc function,32 defined
as . In Schoenberg’s theorem, the

31In his original 1946 paper [138], [139], Schoenberg referred to the
M strictly as “basic functions” or “basic spline curves.” The abbreviation
“B-splines” was first coined by him twenty years later [141]. It is also
interesting here to point at the connection with probability theory: as is
clear from (19),M (x) can be written as then-fold convolution of the
indicator functionM (x) with itself from which it follows that a B-spline
of degreen represents the probability density function of the sum of
L = n+ 1 independent random variables with uniform distribution in the
interval [�1=2; 1=2]. The explicit formula of this function was known as
early as 1820 by Laplace [63] and is essentially (20), as also acknowledged
by Schoenberg [138]. For further details on the history of B-splines, see,
e.g., Butzer [142].

32The term “sinc” is usually held to be short for the Latinsinus cardinalis
[125]. Although it has become well known in connection with the sampling
theorem, it was not used by Shannon in his original papers, but appears to
have been introduced first in 1953 by Woodward [143].

functions are piecewise polynomials of degree, which
join smoothly according to the definition of a spline, the
coefficients are computed from the samples and the
kernel is the th degree B-spline.33

In the decades to follow, both Shannon’s and Schoenberg’s
paper would prove most fruitful, but largely in different
fields. The former had great impact on communication
engineering [144]–[147], numerous signal processing and
analysis applications [98], [124], [125], [148]–[150] and to
some degree also numerical analysis [151]–[154]. Splines,
on the other hand and after some two decades of further
study by Schoenberg [155]–[157], found their way into
approximation theory [158]–[164], mono- and multivariate
interpolation [81], [165]–[167], numerical analysis [168],
statistics [140], and other branches of mathematics [169].
With the advent of digital computers, splines had a major
impact on geometrical modeling and computer-aided geo-
metric design [170]–[174], computer graphics [175], [176],
and even font design [177] to mention but a few practical
applications. In the remainder of this section, we will focus
primarily on the further developments in signal and image
processing.

D. Convolution-Based Interpolation in Signal Processing

When using Waring–Lagrange interpolation, the choice
for the degree of the resulting polynomial pieces fixes the
number of samples to be used in any interpolation interval to

. There is still freedom, however, to choose the position
of the interpolation intervals, the end points of which con-
stitute the transition points of the polynomial pieces of the
interpolant, relative to the sample intervals. It is easy to see
that if they are chosen to coincide with the sample intervals,
there are possibilities of choosing the position—in the se-
quence of samples to be used—of the two samples making
up the interpolation interval and that each of these possibili-
ties gives rise to a different impulse response or kernel.

In their 1973 study [178] of these kernels for use in dig-
ital signal processing, Schafer and Rabiner concluded that
the only ones that are symmetrical and, thus, do not intro-
duce phase distortions are those corresponding to the cases
where is odd and the number of constituent samples on
either side of the interpolation interval is the same. It must
be pointed out, however, that their conclusion does not hold
in general, but is a consequence of letting the interpolation
and sample intervals coincide. If the interpolation intervals
are chosen according to the parity of, as in the aforemen-
tioned definition of the mathematical spline, then the kernels
corresponding to Waring–Lagrange central interpolation for
even will also be symmetrical. Examples of these had al-
ready been given by Schoenberg [138]. Schafer and Rabiner
also studied the spectral properties of the odd-degree kernels,
concluding that the higher order kernels possess consider-
ably better low-pass properties than linear interpolation and

33Later, in Section IV-I, it will become clear that the kinship between
both theorems goes even further, in the sense that the sampling theorem
for bandlimited functions is the limiting case of the sampling theorem for
splines.
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discussed the design of alternative finite impulse response
interpolators based on prespecified bandpass and bandstop
characteristics. More information on this can also be found
in the tutorial review by Crochiere and Rabiner [179].

E. Cubic Convolution Interpolation in Image Processing

The early 1970s was also the time digital image pro-
cessing really started to develop. One of the first applications
reported in the literature was the geometrical rectification
of digital images obtained from the first Earth Resources
Technology Satellite launched by the United States National
Aeronautics and Space Administration in 1972. The need
for more accurate interpolations than obtained by standard
linear interpolation in this application led to the development
of a still very popular technique known ascubic convolution,
which involves the use of a sinc-like kernel composed of
piecewise cubic polynomials. Apart from being interpo-
lating, the kernel was designed to be continuous and to have
a continuous first derivative. Cubic convolution was first
mentioned by Rifman [180], discussed in some more detail
by Simon [181], but the most general form of the kernel
appeared first in a paper by Bernstein [182]

if
if
if

(23)
where is a free parameter resulting from the fact that the
interpolation, continuity and continuous differentiability re-
quirements yield only seven equations, while the two cubic
polynomials defining the kernel make up a total of eight un-
known coefficients.34 The explicit cubic convolution kernel
given by Rifman and Bernstein in their respective papers is
the one corresponding to , which results from forcing
the first derivative of to be equal to that of the sinc func-
tion at . Two alternative criteria for fixing were given
by Simon [181]. The first consists in requiring the second
derivative of the kernel to be continuous at , which re-
sults in . The second amounts to requiring the
kernel to be capable of exact constant slope interpolation,
which yields . Although not mentioned by Simon,
the kernel corresponding to the latter choice foris not only
capable of reproducing linear polynomials, but also quadratic
polynomials.

F. Spline Interpolation in Image Processing

The use of splines for digital-image interpolation was first
investigated only a little later [183]–[186]. An important
paper providing a detailed analysis was published in 1978 by
Hou and Andrews [186]. Their approach, mainly centered
around the cubic B-spline, was based on matrix inversion

34Notice here that the application of convolution kernels to two-dimen-
sional (2-D) data defined on Cartesian grids, as digital images are in most
practical cases, has traditionally been done simply by extending (22) to
f (x; y) = c '(x=T � k)'(y=T � l), whereT and
T denote the sampling interval inx andy direction, respectively. This ap-
proach can, of course, be extended to any number of dimensions and allows
for the definition and analysis of kernels in one dimension only.

techniques for computing the coefficients in (22). Qual-
itative experiments involving magnification (enlargement)
and minification (reduction) of image data demonstrated the
superiority of cubic B-spline interpolation over techniques
such as nearest neighbor or linear interpolation and even
interpolation based on the truncated sinc function as kernel.
The results of the magnification experiments also clearly
showed the necessity for this type of interpolation to use
the coefficients rather than the original samples in
(22) in order to preserve resolution and contrast as much as
possible.

G. Cubic Convolution Interpolation Revisited

Meanwhile, research on cubic convolution interpolation
continued. In 1981, Keys [187] published an important study
that provided new approximation-theoretic insights into this
technique. He argued that the best choice forin (23) is that
the Taylor series expansion of the interpolant resulting
from cubic convolution interpolation of equidistant samples
of an original function agrees in as many terms as possible
with that of the original function. By using this criterion, he
found that the optimal choice is in which case

, for all . This implies that the in-
terpolation error goes to zero uniformly at a rate proportional
to the third power of the sample interval. In other words, for
this choice of , cubic convolution yields a third-order ap-
proximation of the original function. For all other choices of

, he found that it yields only a first-order approximation,
just like nearest neighbor interpolation. He also pointed at
the fact that cubic Lagrange and cubic spline interpolation
both yield a fourth-order approximation—the highest pos-
sible with piecewise cubics—and continued to derive a cubic
convolution kernel with the same property, at the cost of a
larger spatial support.

A second complementary study of the cubic convolu-
tion kernel (23) was published a little later by Park and
Schowengerdt [188]. Rather than studying the properties
of the kernel in the spatial domain, they carried out a
frequency-domain analysis. The Maclaurin series expansion
of the Fourier transform of (23) can be derived as

(24)

where denotes radial frequency. Based on this fact, they
argued that the best choice for the free parameter is

, since this maximizes the number of terms in which
(24) agrees with the Fourier transform of the sinc kernel. That
is to say, it provides the best low-frequency approximation
to the “ideal” reconstruction filter. Park and Schowengerdt
[188], [189] also studied the mean-square error or squared

norm

(25)

with the image obtained from interpolating the samples
of an original image using any interpolation
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kernel . They showed that if the original image is bandlim-
ited, i.e., , for all larger than some

in this one-dimensional analysis and if sampling is per-
formed at a rate equal to or higher than the Nyquist rate, this
error—which they called the “sampling and reconstruction
blur”—is equal to

(26)

where

(27)

with . In the case of undersampling, repre-
sents the average error , where the averaging is over all
possible sets of samples , with . They
argued that if the energy spectrum ofis not known, the
optimal choice for is the one that yields the best low-fre-
quency approximation to . Substituting for and
computing the Maclaurin series expansion of the right-hand
side of (27), they found that this best approximation is ob-
tained by taking, again, . Notwithstanding the
achievements of Keys and Park and Schowengerdt, it is in-
teresting to note that cubic convolution interpolation corre-
sponding to had been suggested in the literature
at least three times before these authors. Already mentioned
is Simon’s paper [181], published in 1975. A little earlier, in
1974, Catmull and Rom [190] had studied interpolation by
“cardinal blending functions” of the type

(28)

where is the degree of polynomials resulting from the
product on the right-hand side and is a weight function
or blending function centered around . Among the
examples they gave is the function corresponding to
and the second-degree B-spline. This function can be
shown to be equal to (23) with . In the fields
of computer graphics and visualization, the third-order
cubic convolution kernel is therefore usually referred to
as the Catmull–Rom spline. It has also been called the
(modified or cardinal) cubic spline [191]–[197]. Finally, this
cubic convolution kernel is precisely the kernel implicitly
used in the previously mentioned osculatory interpolation
scheme proposed around 1900 by Karup and King. More
details on this can be found in a recent paper [198], which
also demonstrates the equivalence of Keys’ fourth-order
cubic convolution and Henderson’s osculatory interpolation
scheme mentioned earlier.

H. Cubic Convolution Versus Spline Interpolation

A comparison of interpolation methods in medical
imaging was presented by Parkeret al. [199] in 1983.
Their study included the nearest neighbor kernel, the linear
interpolation kernel, the cubic B-spline, and two cubic

convolution kernels,35 , the ones corresponding to
and . Based on a frequency-domain

analysis they concluded that the cubic B-spline yields the
most smoothing and that it is therefore better to use a cubic
convolution kernel. This conclusion, however, resulted from
an incorrect use of the cubic B-spline for interpolation in
the sense that the kernel was applied directly to the original
samples instead of the appropriate coefficients—an
approach that has been suggested (explicitly or implicitly)
by many authors over the years [192], [200]–[205]. The
point was later discussed by Maeland [206] who derived the
true spectrum of the cubic spline interpolator orcardinal
cubic splineas the product of the spectrum of the required
prefilter and that of the cubic B-spline. From a correct
comparison of the spectra, he concluded that cubic spline
interpolation is superior compared to cubic convolution
interpolation—a conclusion that would later be confirmed
repeatedly by several evaluation studies (to be discussed in
Section IV-M).36

I. Spline Interpolation Revisited

In classical interpolation theory, it was already known that
it is better or even necessary in some cases to first apply some
transformation to the original data before applying a given in-
terpolation formula. The general rule in such cases is to apply
transformations that will make the interpolation as simple as
possible. The transformations themselves, of course, should
preferably also be as simple as possible. Stirling, in his 1730
book [51] on finite differences, wrote: “As in common al-
gebra, the whole art of the analyst does not consist in the res-
olution of the equations, but in bringing the problems thereto.
So likewise in this analysis: there is less dexterity required in
the performance of the process of interpolation than in the
preliminary determination of the sequences which are best
fitted for interpolation.”37 It should be clear from the fore-
going discussion that a similar statement applies to convolu-
tion-based interpolation using B-splines: the difficulty is not
in the convolution, but in the preliminary determination of
the coefficients . In order for B-spline interpolation to be
a competitive technique, the computational cost of this pre-
processing step should be reduced to a minimum—in many
situations, the important issue is not just accuracy, but the
tradeoff between accuracy and computational cost. Hou and
Andrews [186], as many before and after them, solved the
problem by setting up a system of equations followed by ma-
trix inversion. Even though there exist optimized techniques
[215] for inverting the Toeplitz type of matrices occurring in

35Note that Parkeret al.referred to them consistently as “high-resolution
cubic splines.” According to Schoenberg’s original definition, however, the
cubic convolution kernel (23) is not a cubic spline, regardless of the value
of �. Some people have called piecewise polynomial functions with less
than maximum (nontrivial) smoothness “deficient splines.” See also de Boor
[133], who adopted the definition of a spline function as a linear combination
of B-splines. When using the latter definition, the cubic convolution kernel
may indeed be called a spline. We will not do so, however, in this paper.

36It is, therefore, surprising that even though there are now textbooks
that acknowledge the superiority of spline interpolation [207]–[210], many
books since the late 1980s [149], [211]–[214] give the impression that cubic
convolution is the state-of-the-art in image interpolation.

37The translation from Latin is as given by Whittaker and Robinson [23].
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spline interpolation, this approach is unnecessarily complex
and computationally expensive.

In the early 1990s, it was shown by Unseret al.
[216]–[218] that the B-spline interpolation problem can be
solved much more efficiently by using a digital-filtering
approach. Writing rather than for a B-spline
of degree , we obtain the following from applying the
interpolation requirement to (22):

(29)

Recalling that the transform of a convolution of two
discrete sequences is equal to the product of the in-
dividual transforms, the transform of (29) reads

. Consequently, the B-spline coeffi-
cients can be obtained as

(30)

Since, by definition, , it follows
from insertion of the explicit form of that
, for and , which implies that in these cases

, that is to say, . For any , how-
ever, is a digital “high-boost” filter that corrects
for the blurring effects of the corresponding B-spline convo-
lution kernel. Although this was known to Hou and Andrews
[186] and later authors [219]–[221], they did not realize that
this filter can be implemented recursively.

Since is even for any , we have
, which implies that the poles of the filter come

in reciprocal pairs, so that the filter can be factorized as

(31)

where is a constant factor and

(32)

is the factor corresponding to the pole pair , with
. Since the poles of are the zeros of

, they are obtained by solving . By a further
factorization of (32) into ,
with

(33)

and by using the shift property of thetransform, it is not
difficult to show that in the spatial domain, application of

followed by to given samples
amounts to applying the recursive filters

(34)

(35)

where the are intermediate output samples resulting from
the first causal filter and the are the output samples re-
sulting from the second anticausal filter. For the initialization
of the causal filter, we may use mirror-symmetric boundary
conditions, i.e., , for mod , which
results in [222]

(36)

In most practical cases, will be sufficiently large to justify
taking and terminating the summation
much earlier. An initial value for the anticausal filter may be
obtained from a partial-fraction expansion of (32), resulting
in [218]

(37)

Summarizing, the prefilter corresponding to a
B-spline of degree has pole pairs ,
and (34) and (35), with initial conditions (36) and (37), re-
spectively, need to be applied successively for each, where
the input to the next iteration is formed by the output of the
previous and the input to the first causal filter by the original
samples . The coefficients to be used in (22) are pre-
cisely the of the final anticausal filter, after scaling by the
constant factor . Notice, furthermore, that in the subsequent
evaluation of the convolution (22) for any, the polynomial
pieces of the kernel are computed most efficiently by using
“nested multiplication” by . In other words, by considering
each of the polynomials in the form

rather than
. It can easily be seen that the nested form requires only
floating-point operations (multiplications and additions)

compared to in the case of direct evaluation of the
polynomial.38

It is interesting to have a look at the interpolation kernel
implicitly used in (22) in the case of B-spline interpolation.
Writing for the spatial-domain version of the pre-
filter corresponding to an th degree B-spline, it
follows from (30) that the coefficients are given by

, where “ ” denotes convolution. Substituting
this expression into (22), together with , we obtain

(38)

which can be rewritten in cardinal form as

(39)

where is the so-calledcardinal splineof degree , given
by

(40)

Similar to the sinc function, this kernel satisfies the interpola-
tion property: it vanishes for integer values of its argument,
except at the origin, where it assumes unit value. Further-
more, for all , it has infinite support. And as goes to

38It is precisely this trick that is implemented in the digital filter structure
described by Farrow [223] in 1988 and that later authors [224]–[228] have
referred to as the “Farrow structure.” It was already known, however, to me-
dieval Chinese mathematicians. Jiă Xiàn (middle 11th century) appears to
have used it for solving cubic equations. A generalization to polynomials of
arbitrary degrees was described first by Qín Jiŭsháo [11], [12] (also written
as Ch’in Chiu-shao [229]) in his bookShùsh¯u Jiŭzhāng (“Mathematical
Treatise in Nine Sections,” 1247 AD). In the West, it was rediscovered by
Horner [230] in 1819 and it can be found under his name in many books on
numerical analysis [31], [33], [34], [231]–[233]. Fifteen years earlier, how-
ever, it had also been proposed by Ruffini [234] (see also Cajori [235]). And
even earlier, around 1669, it was used by Newton [236].
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infinity, converges to the sinc function. Although this re-
sult was already known to Schoenberg [237], it did not reach
the signal and image processing community until recently
[238], [239].

In the years to follow, the described digital-filtering ap-
proach to spline interpolation would be used in the design
of efficient algorithms for such purposes as image rotation
[240], the enlargement or reduction of images [241], [242],
the construction of multiresolution image pyramids [243],
[244], image registration [245], [246], wavelet transforma-
tion [247]–[249], texture mapping [250], online signal in-
terpolation [251], and fast spline transformation [252]. For
more detailed information, the reader is referred to men-
tioned papers as well as several reviews [222], [253].

J. Development of Alternative Piecewise Polynomial
Kernels

Independent of the just mentioned developments, re-
search on alternative piecewise polynomial interpolation
kernels continued. Mitchell and Netravali [192] derived a
two-parameter cubic kernel by imposing the requirements of
continuity and continuous differentiability, but by replacing
the interpolation condition by the requirement of first-order
approximation, i.e., the ability to reproduce the constant. By
means of an analysis in the spirit of Keys [187], they also
obtained a criterion to be satisfied by the two parameters in
order to have at least second-order approximation. Special
instances of their kernel include the cubic convolution kernel
(23) corresponding to and the cubic B-spline.
The whole family, sometimes also referred to as BC-splines
[196], was later studied by several authors [195], [196],
[254] in the fields of visualization and computer graphics.

An extension of the results of Park and Schowengerdt
[188] concerning the previously discussed frequency-do-
main error analysis was presented by Schaum [255]. Instead
of the norm, (25), he studied the performance metric

(41)

which summarizes the total interpolation error at a given shift
with respect to the original sampling grid. He found that

in the case of oversampling, this error too is given by (26),
where and may now be written as and , respec-
tively, with

(42)

Also, in the case of undersampling,represents the error
averaged over all possible grid placements. He then pointed
out that interpolation kernels are optimally designed if as
many derivatives as possible of their corresponding error
function are zero at . By further analyzing , he
showed that for -point interpolation kernels, i.e., kernels
that extend over samples in computing (22) at anywith

, this requirement implies that the kernel must be
able to reproduce all monomials of degree and

that this is the case for the Lagrange central interpolation
kernels. Schaum also derived optimal interpolators for
specific power spectra .

Several authors have developed interpolation kernels de-
fined explicitly as finite-linear combinations of B-splines.
Chenet al. [256], e.g., described a kernel which they termed
the “local interpolatory cardinal spline” and is composed of
cubic B-splines only. When applying a scaling factor of two
to its argument, this function very closely resembles Keys’
fourth-order cubic convolution kernel, except that it is twice
rather than once continuously differentiable. Knockaert and
Olyslager [257] discovered a class of what they called “mod-
ified B-splines.” To each integral approximation order
corresponds exactly one kernel of this class. For and

, these are (scaled versions of) the zeroth-degree and
first-degree B-spline, respectively. For any , the cor-
responding kernel is a finite-linear combination of B-splines
of different degrees, such that the composite kernel is inter-
polating and that its degree is as low as possible.

In recent years, the design methodologies originally used
by Keys [187] have been employed more than once again in
developing alternative interpolation kernels. Dodgson [258],
defying the earlier mentioned claim of Schafer and Rabiner
concerning even-degree piecewise polynomial interpolators,
used them to derive a symmetric second-degree interpolation
kernel. In contrast with the quadratic Lagrange interpolator,
this kernel is continuous. Its order of approximation, how-
ever, is one less. German [259] used Keys’ ideas to develop
a continuously differentiable quartic interpolator with fifth
order of approximation. Also, the present author [260] com-
bined them with Park and Schowengerdt’s frequency-domain
error analysis to derive a class of odd-degree piecewise poly-
nomial interpolation kernels with increasing regularity. All
of these kernels, however, have the same order of approxi-
mation as the optimal cubic convolution kernel.

K. Impact of Approximation Theory

The notion ofapproximation order, defined as the rate at
which the error of an approximation goes to zero when the
distance between the samples goes to zero, has already been
used at several points in the previous subsections. In general,
an approximating function is computed as a linear combina-
tion of basis functions, whose coefficients are based on the
samples of the original function. This is the case, e.g., with
approximations obtained from (22), where the basis func-
tions are translates of a single kernel.

The concept of convolution-based approximation has been
studied intensively over the past decades, primarily in ap-
proximation theory, but the interesting results that had been
obtained in this area of mathematics were not noticed by
researchers in signal and image processing until relatively
recently [261], [262]. An important example is the theory de-
veloped by Strang and Fix [263] in the early 1970s and fur-
ther studied by many others, which relates the approximation
error to properties of the kernel involved. Specifically, it im-
plies that the following conditions are equivalent.
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1) The kernel has th-order zeroes in the Fourier do-
main. More precisely

.
(43)

2) The kernel is capable of reproducing all mono-
mials of degree . That is, for every

, there exist coefficients
such that

(44)

3) The first discrete moments of the kernelare con-
stants. That is, for every , there
exists a such that

(45)

4) For each sufficiently smooth function, i.e., a function
whose derivatives up to and including orderare in
the space , there exists a constant , which
does not depend on, and a set of coefficients
such that the norm of the difference betweenand
its approximation obtained from (22) is bounded as

as (46)

This result holds for all compactly supported kernels [263],
but also extends to noncompactly supported kernels having
suitable inverse polynomial decay [264]–[267] or even less
stringent properties [268], [269]. Extensions have also been
made to norms, [264], [265], [267], [270],
[271]. Furthermore, although the classical Strang–Fix theory
applies to the case of an orthogonal projection, alternative ap-
proximation methods such as interpolation and quasiinterpo-
lation also yield an approximation error [270]–[273].
A detailed treatment of the theory is outside the scope of the
present paper and the reader is referred to mentioned papers
for more information.

An interesting observation that follows from these equiv-
alence conditions is that even though the original function
does not at all have to be a polynomial, the capability of a
given kernel to let the approximation error go to zero as
when (fourth condition) is determined by its ability to
exactly reproduce all polynomials of maximum degree
(second condition). In particular, it follows that in order for
the approximation to converge to the original function at all
when , the kernel must have at least approximation
order , which implies that it must at least be able to re-
produce the constant. If we take (first condition),
which yields the usually desirable property of unit gain for

, we have , which implies that the kernel sam-
ples must sum to one regardless of the position of the kernel
relative to the sampling grid (third condition). This is gen-
erally known as thepartition of unity condition—a condi-
tion that is not satisfied by virtually all so-calledwindowed
sinc functions, which have frequently been proclaimed as the
most appropriate alternative for the “ideal” interpolator.

As can be appreciated from (46), the theoretical notion of
approximation order is still rather qualitative and not suit-

able for precise determination of the approximation error. In
many applications, it would be very useful to have a more
quantitative way of estimating the error
induced by a given kernel and sampling step . In 1999, it
was shown by Blu and Unser [268], [274], [275] that for any
convolution-based approximation scheme, this error is given
by the relation

(47)

where the first term is a Fourier-domain prediction of the
error, given by

(48)

and the second term goes to zero faster than. Here, de-
notes the highest derivative of that still has finite energy.
The error function in (48) is completely determined by
the prefiltering and reconstruction kernels involved in the ap-
proximation scheme. In the case where the scheme is actually
an interpolation scheme, it follows that

(49)
If the original function is band-limited or otherwise suffi-
ciently smooth (which means that its intrinsic scale is large
with respect to the sampling step), the prediction (48) is
exact, that is to say, . In all other cases,
represents the average of over all possible sets of sam-
ples , with . Note that if the kernel itself
is forced to possess the interpolation property ,
with the Kronecker symbol, we have from the discrete
Fourier transform pair
that the denominator of (49) equals one, so that the error
function reduces to the previously mentioned function (27)
proposed by Park and Schowengerdt [188], [189].

It will be clear from (48) that the rate at which the ap-
proximation error goes to zero as is determined
by the degree of flatness of the error function (49) near the
origin. This latter quantity follows from the Maclaurin se-
ries expansion of the function. If all derivatives up to order
2 at the origin are zero, this expansion can be written as

, where
and where use has been made of the fact that all odd terms of
the expansion are zero because of the symmetry of the func-
tion. Substitution into (48) then shows that the last condition
in the Strang–Fix theory can be reformulated more quantita-
tively as follows: for sufficiently smooth functions, that is
to say, functions for which is finite, the norm of
the difference betweenand the approximation obtained
from (22) is given by [253], [274], [276], [277]

as (50)

In view of the practical need in many applications to op-
timize the cost-performance tradeoff of interpolation, this
raises the questions of which kernels of given approximation
order have the smallest support and which of the latter ker-
nels have the smallest asymptotic constant. These ques-
tions were recently answered by Bluet al.[278]. Concerning
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the first, they showed that these kernels are piecewise poly-
nomials of degree and that their support is of size

. Moreover, the full class of these so-called maximal-order
minimum-support (MOMS) kernels is given by a linear com-
bination of an ( )th-degree B-spline and its derivatives39

(51)

where and the remaining are free parameters
that can be tuned so as to let the kernel satisfy additional
criteria. For example, if the kernel is supposed to have max-
imum smoothness, it turns out that all of the latter are
necessarily zero, so that we are left with the ( )th-degree
B-spline itself. Alternatively, if the kernel is supposed to pos-
sess the interpolation property, it follows that theare such
that the kernel boils down to the ( )th-degree Lagrange
central interpolation kernel. A more interesting design goal,
however, is to minimize the asymptotic constant, the gen-
eral form of which for MOMS kernels is given by [278]

(52)

where is a polynomial of degree
. It was shown by Bluet al. [278] that the which

minimizes (52) for any order can be obtained from the in-
duction relation

(53)

which is initialized by . The resulting
kernels were coined optimized MOMS (O-MOMS) kernels.

From inspection of (53), it is clear that regardless of the
value of , the corresponding polynomial will always
consist of even terms only. Hence, ifis even, the degree of

will be and since an ( )th-degree B-spline is
precisely times continuously differentiable, it follows
from (51) that the corresponding kernel is continuous, but
that its first derivative is discontinuous. If, on the other hand,

is odd, the degree of the polynomial will be ,
so that the corresponding kernel itself will be discontinuous.
In order to have at least a continuous derivative, as may be
required for some applications, Bluet al. [278] also carried
out constrained minimizations of (52). The resulting kernels
were termed suboptimal MOMS (SO-MOMS).

L. Development of Alternative Interpolation Methods

Although—as announced in the introduction—the main
concern in this section is the transition from classical polyno-
mial interpolation approaches to modern convolution-based
approaches and the many variants of the latter that have been
proposed in the signal and image processing literature, it may
be good to extend the perspectives and briefly discuss sev-
eral alternative methods that have been developed since the
1980s. The goal here is not to be exhaustive, but to give an
impression of the more specific interpolation problems and

39Blu et al.[278] point out that this fact had been published earlier by Ron
[279] in a more mathematically abstract and general context: the theory of
exponential B-splines.

their solutions as studied in mentioned fields of research over
the past two decades. Pointers to relevant literature are pro-
vided for readers interested in more details.

Deslauriers and Dubuc [280], [281], e.g., studied the
problem of extending known function values at the
integers to all integral multiples of , where the base
is also integer. In principle, any type of interpolation can
be used to compute the
and the process can be iterated to find the value for
any rational number whose denominator is an integral
power of . As pointed out by them, the main properties of
this so-called -adic interpolation processare determined
by what they called the “fundamental function,” i.e., the
kernel , which reveals itself when feeding the process
with a discrete impulse sequence. They showed that when
using Waring–Lagrange interpolation40 of any odd degree

, the corresponding kernel has a support limited to
and is capable of reproducing polyno-

mials of maximum degree . Ultimately, it satisfies the
-scale relation

(54)

where . Taking , we have a dyadic
interpolation process, which has strong links with the
multiresolution theory of wavelets. Indeed, for any, the
Deslauriers-Dubuc kernel of order 2is the autocorrelation
of the Daubechies scaling function [284], [285]. More
details and further references on interpolating wavelets
are given by, e.g., Mallat [285]. See Daiet al. [286] for a
recent study on dyadic interpolation in the context of image
processing.

Another approach that has received quite some attention
since the 1980s is to consider the interpolation problem in the
Fourier domain. It is well known [287] that multiplication by
a phase component in the frequency domain corresponds to
a shift in the signal or image domain. Obvious applications
of this property are translation and zooming of image data
[288]–[292]. Interpolation based on the Fourier shift the-
orem is equivalent to another Fourier-based method, known
as zero-filled or zero-padded interpolation[293]–[297]. In
the spatial domain, both techniques amount to assuming pe-
riodicity of the underlying signal or image and convolving
the samples with the “periodized sinc,” or Dirichlet’s kernel
[298]–[303]. Because of the assumed periodicity, the infi-
nite convolution sum can be rewritten in finite form. Fourier-
based interpolation is especially useful in situations where
the data is acquired in Fourier space, such as in magnetic-res-
onance imaging (MRI), but by use of the fast Fourier trans-
form may in principle be applied to any type of data. Vari-
ants of this approach based on the fast Hartley transform
[304]–[306] and discrete cosine transform [307]–[309] have
also been proposed. More details can be found in mentioned
papers and the references therein.

An approach that has hitherto received relatively little at-
tention in the signal and image processing literature is to

40Subdivision algorithms for Hermite interpolation were later studied by
Merrien and Dubuc [282], [283].
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consider sampled data as realizations of a random process
at given spatial locations and to make inferences on the un-
observed values of the process by means of a statistically
optimal predictor. Here, “optimal” refers to minimizing the
mean-squared prediction error, which requires a model of
the covariance between the data points. This approach to
interpolation is generally known askriging—a term coined
by the statistician Matheron [310] in honor of D. G. Krige
[311], a South-African mining engineer who developed em-
pirical methods for determining true ore-grade distributions
from distributions based on sampled ore grades [312], [313].
Kriging has been studied in the context of geostatistics [312],
[314], [315], cartography [316], and meteorology [317] and
is closely related to interpolation by thin-plate splines or ra-
dial basis functions [318], [319]. In medical imaging, the
technique seems to have been applied first by Stytz and Parrot
[320], [321]. More recent studies related to kriging in signal
and image processing include those of Kerwin and Prince
[322] and Leunget al. [323].

A special type of interpolation problem arises when
dealing with binary data, such as, e.g., segmented images.
It is not difficult to see that in that case, the use of any
of the aforementioned convolution-based interpolation
methods followed by requantization practically boils down
to nearest-neighbor interpolation. In order to cope with
this problem, it is necessary to consider the shape of the
objects—that is to say, their contours, rather than their
“grey-level” distributions. For the interpolation of slices
in a three-dimensional (3-D) data set, e.g., this may be
accomplished by extracting the contours of interest and
to apply elastic matching to estimate intermediate con-
tours [324], [325]. An alternative is to apply any of the
described convolution-based interpolation methods to the
distance transform of the binary data. This latter approach
to shape-based interpolationwas originally proposed in the
numerical analysis literature [326] and was first adapted to
medical image processing by Raya and Udupa [327]. Later
authors have proposed variants of their method by using
alternative distance transforms [328] and morphological
operators [329]–[332]. Extensions to the interpolation of
tree-like image structures [333] and even ordinary grey-level
images [334], [335] have also been made.

In a way, kriging and shape-based interpolation may be
considered the precursors of more recent image interpolation
techniques, which attempt to incorporate knowledge about
the image content. The idea with most of these techniques is
to adapt or choose between existing interpolation techniques,
depending on the outcome of an initial image analysis phase.
Since edges are often the more prevalent image features,
most researchers have focused on gradient-based schemes
for the analysis phase, although region-based approaches
have also been reported. Examples of specific applications
where the potential advantages of adaptive interpolation
approaches have been demonstrated are image resolution
enhancement or zooming [205], [336]–[342], spatial and
temporal coding or compression of images and image
sequences [343], [344], texture mapping [250], and volume
rendering [345]. Clearly, the results of such adaptive

methods depend on the performance of the employed
analysis scheme as much as on that of the eventual (often
convolution-based) interpolators.

M. Evaluation Studies and Their Conclusions

To return to our main topic: apart from the study by Parker
et al. [199] discussed in Section IV-H, many more compar-
ative evaluation studies of interpolation methods have been
published over the years. Most of these appeared in the med-
ical-imaging-related literature. Perhaps this can be explained
from the fact that especially in medical applications, the is-
sues of accuracy, quality, and also speed can be of vital im-
portance. The loss of information and the introduction of dis-
tortions and artifacts caused by any manipulation of image
data should be minimized in order to minimize their influ-
ence on the clinicians’ judgements [276].

Schreiner et al. [346] studied the performance of
nearest-neighbor, linear and cubic convolution interpolation
in generating maximum intensity projections (MIPs) of
3-D magnetic-resonance angiography (MRA) data for
the purpose of detection and quantification of vascular
anomalies. From the results of experiments involving both
a computer-generated vessel model and clinical MRA data,
they concluded that the choice for an interpolation method
can have a dramatic effect on the information contained in
MIPs. However, whereas the improvement of linear over
nearest-neighbor interpolation was considerable, the further
improvement of cubic convolution interpolation was found
to be negligible in this application. Similar observations had
been made earlier by Hermanet al. [191] in the context of
image reconstruction from projections.

Ostuni et al. [347] analyzed the effects of linear
and cubic spline interpolation, as well as truncated and
Hann-windowed sinc interpolation on the reslicing of
functional MRI (fMRI) data. From the results of for-
ward–backward geometric transformation experiments on
clinical fMRI data, they concluded that the interpolation
errors caused by cubic spline interpolation are much smaller
than those due to linear and truncated-sinc interpolation.
In fact, the errors produced by the latter two types of
interpolation were found to be similar in magnitude, even
with a spatial support of eight sample intervals for the
truncated-sinc kernel compared to only two for the linear
interpolation kernel. The Hann-windowed sinc kernel with a
spatial support extending over six to eight sample intervals
performed comparably to cubic spline interpolation in their
experiments, but it required much more computation time.

Using similar reorientation experiments, Haddad and
Porenta [348] found that the choice for an interpolation
technique significantly affects the outcome of quantitative
measurements in myocardial perfusion imaging based on
single photon emission computed tomography (SPECT).
They concluded that cubic convolution is superior to sev-
eral alternative methods, such as local averaging, linear
interpolation and what they called “hybrid” interpolation,
which combines in-plane 2-D linear interpolation with
through-plane cubic Lagrange interpolation—an approach
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that had been shown earlier [349] to yield better results than
linear interpolation only. Here, we could also mention sev-
eral studies in the field of remote sensing [193], [350], [351],
which also showed the superiority of cubic convolution over
linear and nearest-neighbor interpolation.

Grevera and Udupa [197] compared interpolation methods
for the very specific task of doubling the number of slices of
3-D medical data sets. Their study included not only convo-
lution-based methods, but also several of the shape-based in-
terpolation methods [334], [352] mentioned earlier. The ex-
periments consisted in subsampling a number of magnetic
resonance (MR) and computed tomography (CT) data sets,
followed by interpolation to restore the original resolutions.
Based on the results they concluded that there is evidence
that shape-based interpolation is the most accurate method
for this task. Note, however, that concerning the convolution-
based methods, the study was limited to nearest-neighbor,
linear, and two forms of cubic convolution interpolation (al-
though they referred to the latter as cubic spline interpola-
tion). In a later more task-specific study [353], which led
to the same conclusion, shape-based interpolation was com-
pared only to linear interpolation.

A number of independent large-scale evaluations of
convolution-based interpolation methods for the purpose of
geometrical transformation of medical image data have re-
cently been carried out. Lehmannet al.[354], e.g., compared
a total of 31 kernels, including the nearest-neighbor, linear,
and several quadratic [258] and cubic convolution kernels
[187], [188], [192], [355], as well as the cubic B-spline
interpolator, various Lagrange- [255] and Gaussian-based
[356] interpolators and truncated and Blackman-Harris
[357] windowed-sinc kernels of different spatial support.
From the results of computational-cost analyses and for-
ward-backward transformation experiments carried out
on CCD-photographs, MRI sections, and X-ray images, it
followed that, overall, cubic B-spline interpolation provides
the best cost-performance tradeoff.

An even more elaborate study was presented by the present
author [358], who carried out a cost-performance analysis of
a total of 126 kernels with spatial support ranging from two to
ten grid intervals. Apart from most of the kernels studied by
Lehmannet al., this study also included higher degree gen-
eralizations of the cubic convolution kernel [260], cardinal
spline, and Lagrange central interpolation kernels up to ninth
degree, as well as windowed-sinc kernels using over a dozen
different window functions well known from the literature
on harmonic analysis of signals [357]. The experiments in-
volved the rotation and subpixel translation of medical data
sets from many different modalities, including CT, three dif-
ferent types of MRI, PET, SPECT, as well as 3-D rotational
and X-ray angiography. The results revealed that of all men-
tioned types of interpolation, spline interpolation generally
performs statistically significantly better.

Finally, we mention the studies by Thévenazet al. [276],
[277], who carried out theoretical as well as experimental
comparisons of many different convolution-based inter-
polation schemes. Concerning the former, they discussed
the approximation-theoretical aspects of such schemes and

pointed at the importance of having a high approximation
order, rather than a high regularity and a small value for the
asymptotic constant, as discussed in the previous subsection.
Indeed, the results of their experiments, which included all
of the aforementioned piecewise polynomial kernels, as well
as the quartic convolution kernel by German [259], several
types of windowed-sinc kernels and the O-MOMS [278],
confirmed the theoretical predictions and clearly showed
the superiority of kernels with optimized properties in these
terms.

V. SUMMARY AND CONCLUSION

The goal in this paper was to give an overview of the
developments in interpolation theory of all ages and to
put the important techniques currently used in signal and
image processing into historical perspective. We pointed
at relatively recent research into the history of science, in
particular of mathematical astronomy, which has revealed
that rudimentary solutions to the interpolation problem date
back to early antiquity. We gave examples of interpolation
techniques originally conceived by ancient Babylonian as
well as early-medieval Chinese, Indian, and Arabic as-
tronomers and mathematicians and we briefly discussed the
links with the classical interpolation techniques developed
in Western countries from the 17th until the 19th century.

The available historical material has not yet given reason
to suspect that the earliest known contributors to classical
interpolation theory were influenced in any way by men-
tioned ancient and medieval Eastern works. Among these
early contributors were Harriot and Briggs who, in the first
half of the 17th century, developed higher order interpola-
tion schemes for the purpose of subtabulation. A general-
ization of their rules for equidistant data was given indepen-
dently by Gregory and Newton. We saw, however, that it is
Newton who deserves the credit for having put classical in-
terpolation theory on a firm foundation. He invented the con-
cept of divided differences, allowing for a general interpola-
tion formula applicable to data at arbitrary intervals and gave
several special formulae that follow from it. In the course
of the 18th and 19th century, these formulae were further
studied by many others, including Stirling, Gauss, Waring,
Euler, Lagrange, Bessel, Laplace, and Everett, whose names
are nowadays inextricably bound up with formulae that can
easily be derived from Newton’sregula generalis.

Whereas the developments until the end of the 19th cen-
tury had been impressive, the developments in the past cen-
tury have been explosive. We briefly discussed early results
in approximation theory, which revealed the limitations of
interpolation by algebraic polynomials. We then discussed
two major extensions of classical interpolation theory intro-
duced in the first half of the 20th century: first, the concept
of the cardinal function, mainly due to E. T. Whittaker, but
also studied before him by Borel and others and eventually
leading to the sampling theorem for bandlimited functions as
found in the works of J. M. Whittaker, Kotel’nikov, Shannon,
and several others and second, the concept of osculatory in-
terpolation, researched by many and eventually resulting in
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Schoenberg’s theory of mathematical splines. We pointed at
the important consequence of these extensions: a formula-
tion of the interpolation problem in terms of a convolution of
a set of coefficients with some fixed kernel.

The remainder of the paper focused on the further de-
velopment of convolution-based interpolation in signal and
image processing. The earliest and probably most impor-
tant techniques studied in this context were cubic convolu-
tion interpolation and spline interpolation and we have dis-
cussed in some detail the contributions of various researchers
in improving these techniques. Concerning cubic convolu-
tion, we highlighted the work of Keys and also Park and
Schowengerdt, who presented different techniques for de-
riving the mathematically most optimal value for the free pa-
rameter involved in this scheme. Concerning spline interpo-
lation, we discussed the work of Unser and his coworkers,
who invented a fast recursive algorithm for carrying out the
prefiltering required for this scheme, thereby making cubic
spline interpolation as computationally cheap as cubic con-
volution interpolation. As a curiosity, we remarked that not
only spline interpolation, but cubic convolution interpolation
too can be traced back to osculatory interpolation techniques
known from the beginning of the 20th century—a fact that,
to the author’s knowledge, has not been pointed out before.

After a summary of the development of many alternative
piecewise polynomial kernels, we discussed some of the in-
teresting results known in approximation theory for some
time now, but brought to the attention of signal and image
processors only recently. These are, in particular, the equiv-
alence conditions due to Strang and Fix, which link the be-
havior of the approximation error as a function of the sam-
pling step to specific spatial and Fourier domain properties
of the employed convolution kernel. We discussed the exten-
sions by Blu and Unser, who showed how to obtain more pre-
cise, quantitative estimates of the approximation error based
on an error function which is completely determined by the
kernel. We also pointed at their recent efforts toward mini-
mization of the interpolation error, which has resulted in the
development of kernels with minimal support and optimal
approximation properties.

After a brief discussion of several alternative methods
proposed over the past two decades for specific interpolation
problems, we finally summarized the results of quite a
number of evaluation studies carried out recently, primarily
in medical imaging. All of these have clearly shown the
dramatic effect the wrong choice for an interpolation method
can have on the information content of the data. From this,
it can be concluded that the issue of interpolation deserves
more attention than it has received so far in some signal and
image processing applications. The results of these studies
also strongly suggest that in order to reduce the errors caused
by convolution-based interpolation, it is more important for
a kernel to have good approximation theoretical properties,
in terms of approximation order and asymptotic behavior,
than to have a high degree of regularity. In applications
where the latter is an important issue, it follows that the
most suitable kernels are B-splines, since they combine a

maximal order of approximation with maximal regularity
for a given spatial support.
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